Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0299521, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507338

RESUMO

OBJECTIVE: To define the relationship between chronic chikungunya post-viral arthritis disease severity, cytokine response and T cell subsets in order to identify potential targets for therapy. METHODS: Participants with chikungunya arthritis were recruited from Colombia from 2019-2021. Arthritis disease severity was quantified using the Disease Activity Score-28 and an Arthritis-Flare Questionnaire adapted for chikungunya arthritis. Plasma cytokine concentrations (interleukin (IL)-1ß, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, interferon-γ and tumor necrosis factor (TNF)) were measured using a Meso Scale Diagnostics assay. Peripheral blood T cell subsets were measured using flow cytometry. RESULTS: Among participants with chikungunya arthritis (N = 158), IL-2 levels and frequency of regulatory T cells (Tregs) were low. Increased arthritis disease activity was associated with higher levels of inflammatory cytokines (IL-6, TNF and CRP) and immunoregulatory cytokine IL-10 (p<0.05). Increased arthritis flare activity was associated with higher Treg frequencies (p<0.05) without affecting T effector (Teff) frequencies, Treg/Teff ratios and Treg subsets. Finally, elevated levels of IL-2 were correlated with increased Treg frequency, percent Tregs out of CD4+ T cells, and Treg subsets expressing immunosuppressive markers, while also correlating with an increased percent Teff out of live lymphocytes (p<0.05). CONCLUSION: Chikungunya arthritis is characterized by increased inflammatory cytokines and deficient IL-2 and Treg responses. Greater levels of IL-2 were associated with improved Treg numbers and immunosuppressive markers. Future research may consider targeting these pathways for therapy.


Assuntos
Artrite Infecciosa , Febre de Chikungunya , Humanos , Citocinas/metabolismo , Interleucina-10/metabolismo , Estudos Transversais , Interleucina-2/metabolismo , Interleucina-6/metabolismo , Febre de Chikungunya/complicações , Linfócitos T Reguladores/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Imunossupressores
2.
Biomedicines ; 12(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38397857

RESUMO

Currently, cardiovascular diseases are a major contributor to morbidity and mortality worldwide, having a significant negative impact on both the economy and public health. The renin-angiotensin system contributes to a high spectrum of cardiovascular disorders and is essential for maintaining normal cardiovascular homeostasis. Overactivation of the classical renin-angiotensin system is one of the most important pathophysiological mechanisms in the progression of cardiovascular diseases. The counter-regulatory renin-angiotensin system is an alternate pathway which favors the synthesis of different peptides, including Angiotensin-(1-7), Angiotensin-(1-9), and Alamandine. These peptides, via the angiotensin type 2 receptor (AT2R), MasR, and MrgD, initiate multiple downstream signaling pathways that culminate in the activation of various cardioprotective mechanisms, such as decreased cardiac fibrosis, decreased myocardial hypertrophy, vasodilation, decreased blood pressure, natriuresis, and nitric oxide synthesis. These cardioprotective effects position them as therapeutic alternatives for reducing the progression of cardiovascular diseases. This review aims to show the latest findings on the cardioprotective effects of the main peptides of the counter-regulatory renin-angiotensin system.

3.
Curr Med Chem ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605403

RESUMO

Quorum-sensing is a communication mechanism between bacteria with the ability to activate signaling pathways in the bacterium and in the host cells. Pseudomonas aeruginosa is a pathogen with high clinical relevance due to its vast virulence factors repertory and wide antibiotic resistance mechanisms. Due to this, it has become a pathogen of interest for developing new antimicrobial agents in recent years. P. aeruginosa has three major QS systems that regulate a wide gene range linked with virulence factors, metabolic regulation, and environment adaption. Consequently, inhibiting this communication mechanism would be a strategy to prevent the pathologic progression of the infections caused by this bacterium. In this review, we aim to overview the current studies about the signaling mechanisms of the QS system of P. aeruginosa and its effects on this bacterium and the host.

4.
Front Immunol ; 13: 1007106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275717

RESUMO

Objective: Chikungunya virus (CHIKV) causes persistent arthritis, and our prior study showed that approximately one third of CHIKV arthritis patients had exacerbated arthritis associated with exercise. The underlying mechanism of exercise-associated chikungunya arthritis flare (EACAF) is unknown, and this analysis aimed to examine the regulatory T-cell immune response related to CHIKV arthritis flares. Methods: In our study, 124 Colombian patients with a history of CHIKV infection four years prior were enrolled and 113 cases with serologically confirmed CHIKV IgG were used in this analysis. Patient information was gathered via questionnaires, and blood samples were taken to identify total live peripheral blood mononuclear cells, CD4+ cells, T regulatory cells, and their immune markers. We compared outcomes in CHIKV patients with (n = 38) vs. without (n = 75) EACAF using t-tests to assess means and the Fisher's exact test, chi-squared to evaluate categorical variables, and Kruskal-Wallis tests in the setting of skewed distributions (SAS 9.3). Results: 33.6% of CHIKV cases reported worsening arthritis with exercise. EACAF patients reported higher global assessments of arthritis disease ranging from 0-100 (71.2 ± 19.7 vs. 59.9 ± 28.0, p=0.03). EACAF patients had lower ratios of T regulatory (Treg)/CD4+ T-cells (1.95 ± 0.73 vs. 2.4 ± 1.29, p = 0.04) and lower percentage of GARP (glycoprotein-A repetitions predominant) expression per Treg (0.13 ± 0.0.33 vs. 0.16 ± 0.24 p= 0.020). Conclusion: These findings suggest relative decreases in GARP expression may indicate a decreased level of immune suppression. Treg populations in patients with CHIKV arthritis may contribute to arthritis flares during exercise, though current research is conflicting.


Assuntos
Artrite , Febre de Chikungunya , Vírus Chikungunya , Humanos , Linfócitos T Reguladores , Leucócitos Mononucleares/metabolismo , Exacerbação dos Sintomas , Artrite/metabolismo , Imunoglobulina G/metabolismo
5.
Mini Rev Med Chem ; 22(6): 848-864, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34856897

RESUMO

Some bacterial species use a cell-to-cell communication mechanism called Quorum Sensing (QS). Bacteria release small diffusible molecules, usually termed signals which allow the activation of beneficial phenotypes that guarantee bacterial survival and the expression of a diversity of virulence genes in response to an increase in population density. The study of the molecular mechanisms that relate signal molecules with bacterial pathogenesis is an area of growing interest due to its use as a possible therapeutic alternative through the development of synthetic analogues of autoinducers as a strategy to regulate bacterial communication as well as the study of bacterial resistance phenomena, the study of these relationships is based on the structural diversity of natural or synthetic autoinducers and their ability to inhibit bacterial QS, which can be approached with a molecular perspective from the following topics: i) Molecular signals and their role in QS regulation; ii) Strategies in the modulation of Quorum Sensing; iii) Analysis of Bacterial QS circuit regulation strategies; iv) Structural evolution of natural and synthetic autoinducers as QS regulators. This mini-review allows a molecular view of the QS systems, showing a perspective on the importance of the molecular diversity of autoinducer analogs as a strategy for the design of new antimicrobial agents.


Assuntos
Anti-Infecciosos , Percepção de Quorum , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Percepção de Quorum/genética , Virulência
6.
J Cell Immunol ; 3(3): 191-197, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322686

RESUMO

OBJECTIVE: The primary objective of this research was to explore the link between sleep and flare pain associated with chikungunya virus (CHIKV) infection. The secondary objective was to investigate if cytokines and T regulatory (Treg) cells have an influence on this relationship. METHODS: A cross-sectional study was performed using data collected in Barranquilla, Colombia, which enrolled patients with and without chronic arthritis with a history of chikungunya infection. Flare severity was measured by a version of the Outcome Measures in Rheumatoid Arthritis Clinical Trials (OMERACT) flare questionnaire adapted for CHIKV arthritis, including metrics for pain, difficulty with physical activity, fatigue, stiffness and difficulty maintaining social activities due to arthritis that contribute to flare severity. In addition, four sleep disturbance items, five inflammatory cytokine levels, four anti-inflammatory cytokine levels, and six Treg levels were measured. Then, multivariable linear regression models were used to test the direct and indirect effects of flare-pain on sleep disturbance, and to determine whether this relationship was mediated by cytokines or Tregs. Finally, the SAS CALIS procedure was used to test path models showing possible causal effects with mediators and confounds. RESULTS: The analysis showed that sleep disturbance is positively correlated with CHIKV arthritis flare pain, and that it is a significant predictor of flare severity after adjusting for demographic variables, cytokine, and T cell levels. Further, neither T cells nor cytokines mediate the pain/sleep relationship in CHIKV arthritis. CONCLUSION: There is a strong association between sleep disturbance and arthritis flare pain and severity; however, this relationship is not mediated by cytokines or T cells. Since this study is unable to determine causation, further research is needed to determine the mechanism underlying the relationship between sleep disturbances and CHIKV arthritis flares.

7.
Curr Pharm Des ; 27(1): 80-90, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32386485

RESUMO

Ischemic heart disease is the main cause of death globally. In the heart, the ischemia/reperfusion injury gives rise to a complex cascade of molecular signals, called cardiac remodeling, which generates harmful consequences for the contractile function of the myocardium and consequently heart failure. Metformin is the drug of choice in the treatment of type 2 diabetes mellitus. Clinical data suggest the direct effects of this drug on cardiac metabolism and studies in animal models showed that metformin activates the classical pathway of AMP-activated protein kinase (AMPK), generating cardioprotective effects during cardiac remodeling, hypertrophy and fibrosis. Furthermore, new studies have emerged about other targets of metformin with a potential role in cardioprotection. This state of the art review shows the available scientific evidence of the cardioprotective potential of metformin and its possible effects beyond AMPK. Targeting of autophagy, mitochondrial function and miRNAs are also explored as cardioprotective approaches along with a therapeutic potential. Further advances related to the biological effects of metformin and cardioprotective approaches may provide new therapies to protect the heart and prevent cardiac remodeling and heart failure.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Metformina , Proteínas Quinases Ativadas por AMP , Animais , Insuficiência Cardíaca/tratamento farmacológico , Metformina/farmacologia , Miocárdio
8.
Front Genet ; 9: 14, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29479368

RESUMO

The development of cardiovascular pathologies is partly attributed to epigenetic causes, including histone methylation, which appears to be an important marker in hearts that develop cardiac hypertrophy. Previous studies showed that the histone demethylase JMJD2A can regulate the hypertrophic process in murine cardiomyocytes. However, the influence of JMJD2A on cardiac hypertrophy in a human cardiomyocyte model is still poorly understood. In the present study, cardiomyocytes derived from human induced pluripotent stem cells (iPSCs) were used. Hypertrophy was induced by angiotensin II and endothelin-1 (ET-1), and transfections were performed to overexpress JMJD2A and for small interfering RNA (siRNA)-induced silencing of JMJD2A. Gene expression analyses were determined using RT-PCR and Western blot. The expression levels of B-type natriuretic peptide (BNP), natriuretic peptide A (ANP), and beta myosin heavy chain (ß-MHC) were increased by nearly 2-10-fold with ET-1 compared with the control. However, a higher level of JMJD2A and UTX was detected, whereas the level of JMJD2C was lower. When cardiomyocytes were transiently transfected with JMJD2A, an increase close to 150% in BNP was observed, and this increase was greater after treatment with ET-1. To verify the specificity of JMJD2A activity, a knockdown was performed by means of siRNA-JMJD2A, which led to a significant reduction in BNP. The involvement of JMJD2A suggests that histone-specific modifications are associated with genes encoding proteins that are actively transcribed during the hypertrophy process. Since BNP is closely related to JMJD2A expression, we suggest that there could be a direct influence of JMJD2A on the expression of BNP. These results may be studied further to reduce cardiac hypertrophy via the regulation of epigenetic modifiers.

9.
Rev. colomb. cardiol ; 24(2): 146-152, ene.-abr. 2017. graf
Artigo em Espanhol | LILACS, COLNAL | ID: biblio-900510

RESUMO

Resumen Los cambios epigenéticos inducidos por factores ambientales tienen cada día más relevancia en las enfermedades cardiovasculares. Uno de los componentes moleculares más observados en la hipertrofia cardiaca es la reactivación de los genes fetales causados por diversas patologías que incluyen obesidad, hipertensión arterial, estenosis valvular aórtica, causas congénitas, entre otras. A pesar de las múltiples investigaciones cuyo objetivo es obtener información acerca de los componentes moleculares de esta patología, su influencia en las estrategias terapéuticas es relativamente escasa. En la actualidad se busca información acerca de las proteínas que modifican la expresión de los genes fetales que se reactivan en esta condición. La relación entre las histonas y el ADN tiene un control reconocido en la expresión de genes que son condicionados por el ambiente e inducen modificaciones epigenéticas. Las deacetilasas de histonas son un grupo de proteínas que han demostrado tener un papel importante en la diferenciación de la célula cardiaca y además pueden ser claros componentes en el desarrollo de la hipertrofia cardiaca. En este trabajo se revisan los conocimientos actuales sobre la influencia de estas proteínas y los posibles planes terapéuticos en la hipertrofia cardiaca.


Abstract Epigenetic alterations induced by environmental factors are more relevant each day for cardiovascular diseases. One of the most observed molecular components in hypertrophic cardiomyopathy is the reactivation of fetal genes caused by multiple conditions, including obesity, high blood pressure, aortic valve stenosis and congenital causes. Despite several investigations with the objective of obtaining information regarding molecular components of this condition, its influence in therapeutic strategies is relatively scarce. Nowadays information is being searched about proteins that modify the expression of the fetal genes that reactivate with this condition. The relationship between histones and DNA has a recognised control in the expression of genes that are subject to the environment and induce epigenetic alterations. Histone deacetylases are a group of proteins that have revealed to play an important role in differentiation the cardiac cell and could be clear components in the development of hypertrophic cardiomyopathy. In this study current knowledge about the influence of these proteins and possible therapeutic plans for hypertrophic cardiomyopathy are revised.


Assuntos
Cardiomiopatia Hipertrófica , Cardiomegalia , Histonas , Epigenômica , Histona Desacetilases
10.
Biomed Res Int ; 2016: 2634976, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27722168

RESUMO

Epigenetic changes induced by histone demethylases play an important role in differentiation and pathological changes in cardiac cells. However, the role of the jumonji family of demethylases in the development of cardiac hypertrophy remains elusive. In this study, the presence of different histone demethylases in cardiac cells was evaluated after hypertrophy was induced with neurohormones. A cell line from rat cardiomyocytes was used as a biological model. The phenotypic profiles of the cells, as well as the expression of histone demethylases, were studied through immunofluorescence, transient transfection, western blot, and qRT-PCR analysis after inducing hypertrophy by angiotensin II and endothelin-1. An increase in fetal gene expression (ANP, BNP, and ß-MHC) was observed in cardiomyocytes after treatment with angiotensin II and endothelin-1. A significant increase in JMJD2A expression, but not in UTX or JMJD2C expression, was observed. When JMJD2A was overexpressed in cardiomyocytes through transient transfection, the effect of neurohormones on fetal cardiac gene expression was increased. We conclude that JMJD2A plays a principal role in the regulation of fetal cardiac genes, which increase in expression during the pathological hypertrophic process.


Assuntos
Crescimento Celular , Histona Desmetilases/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Linhagem Celular , Histona Desmetilases/análise , Peptídeo Natriurético Encefálico/metabolismo , Ratos
11.
J Mol Endocrinol ; 56(2): 113-22, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26643909

RESUMO

Increasing thermogenesis in white adipose tissues can be used to treat individuals at high risk for obesity and cardiovascular disease. The objective of this study was to determine the function of EP300-interacting inhibitor of differentiation (EID1), an inhibitor of muscle differentiation, in the induction of beige adipocytes from adipose mesenchymal stem cells (ADMSCs). Subcutaneous adipose tissue was obtained from healthy women undergoing abdominoplasty. ADMSCs were isolated in vitro, grown, and transfected with EID1 or EID1 siRNA, and differentiation was induced after 48 h by administering rosiglitazone. The effects of EID1 expression under the control of the aP2 promoter (aP2-EID1) were also evaluated in mature adipocytes that were differentiated from ADMSCs. Transfection of EID1 into ADMSCs reduced triglyceride accumulation while increasing levels of thermogenic proteins, such as PGC1α, TFAM, and mitochondrial uncoupling protein 1 (UCP1), all of which are markers of energy expenditure and mitochondrial activity. Furthermore, increased expression of the beige phenotype markers CITED1 and CD137 was observed. Transfection of aP2-EID1 transfection induced the conversion of mature white adipocytes to beige adipocytes, as evidenced by increased expression of PGC1α, UCP1, TFAM, and CITED1. These results indicate that EID1 can modulate ADMSCs, inducing a brown/beige lineage. EID1 may also activate beiging in white adipocytes obtained from subcutaneous human adipose tissue.


Assuntos
Adipócitos Brancos/fisiologia , Adipogenia , Células-Tronco Mesenquimais/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Adulto , Proteínas de Ciclo Celular , Células Cultivadas , Feminino , Expressão Gênica , Humanos , Proteínas Nucleares/genética , PPAR gama/fisiologia , Proteínas Repressoras/genética , Gordura Subcutânea/citologia , Adulto Jovem
12.
Stem Cells Int ; 2015: 196348, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26339249

RESUMO

Mesenchymal stem cells are a diverse population of cells with a wide range of potential therapeutic applications. In particular, cells from adipose tissue have the distinction of being easily accessible and contain a lot of stem cells. ADMSCs can be induced to mature adipocyte and activate the energy expenditure upon treatment with total PPARγ agonists. Additionally these cells may respond to cold by activating the thermogenic program. In the present study, we determined the effect of partial agonism of PPARγ and temperature reduction on phenotype and metabolic activity of ADMSCs from human adipose subcutaneous tissue. We found that adipocytes differentiated with total and partial agonists of PPARγ and exposed to 31°C are able to respond to cold significantly increasing the expression of thermogenic proteins such as UCP1, PGC1α, and CITED1, a marker of beige phenotype. Additionally, we found that adipocyte cells subjected to cold had a reduction in triglycerides and increased adiponectin levels. These data confirm the promising role of ADMSCs as a treatment for metabolic disorders since it is possible to induce them to mature adipocytes and modulate their phenotype toward a cell with high-energy expenditure and metabolic beneficial effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...